Ab initio calculations of the lattice dynamics of boron nitride nanotubes
نویسندگان
چکیده
We present an extensive first-principles study of the phonons in boron nitride nanotubes using density functional perturbation theory in the local density approximation. Based on the nonsymmorphic rod-group symmetry of the tubes, the Ramanand infrared-active modes at the G point of the one-dimensional Brillouin zone are evaluated. For zigzag and chiral nanotubes, the set of infrared-active modes is a subset of the Raman-active modes. In particular, the radial breathing mode is not only Raman but also infrared active. However, for armchair tubes, the sets of infraredand Raman-active modes are disjoint. This may serve to spectroscopically distinguish between macroscopic samples of zigzag-chiral and armchair nanotubes. We present the frequencies of the active modes of zigzag, chiral, and armchair tubes as a function of the tube diameter and compare the results with the frequencies obtained by the zone-folding method, i.e., the rolling of a single hexagonal BN sheet into a tube. Except for the high-frequency tangential modes, the zone-folding results are in very good agreement with the ab initio calculations. The radial breathing mode frequency can be derived by folding a sheet of finite width. Finally, we show that the effects of bundling on the phonon frequencies are small. This demonstrates that the obtained results for isolated BN tubes may serve as a basis for an accurate assignment of phonon modes in spectroscopic measurements.
منابع مشابه
Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations
Citation: Li, Feng, Zhu, Zhonghua, Yao, Xiangdong, Lu, Gaoqing, Zhao, Mingwen, Xia, Yueyuan and Chen, Ying 2008-03-14, Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations, Applied physics letters, vol. 92, no. 10, pp. 102515. The following article appeared in Applied physics letters, vol. 92, no. 10, pp. 102515. and may be found at http://dx.doi.org/10.1063/1.2...
متن کاملA Comparative Study of Ab - Initio Thermal Conductivity Ap - proaches : The Case of Cubic Boron Nitride SAIKAT
Submitted for the MAR13 Meeting of The American Physical Society A Comparative Study of Ab-Initio Thermal Conductivity Approaches: The Case of Cubic Boron Nitride SAIKAT MUKHOPADHYAY, Cornell University, LUCAS LINDSAY, Naval Research Laboratory, DAVID BROIDO, Boston College, DEREK STEWART, Cornell University — Given its high strength and large thermal conductivity, cubic boron nitride (cBN) pro...
متن کاملRaman spectroscopy of single-wall boron nitride nanotubes.
Single-wall boron nitride nanotubes samples synthesized by laser vaporization of a hexagonal BN target under a nitrogen atmosphere are studied by UV and visible Raman spectroscopy. We show that resonant conditions are necessary for investigating phonon modes of BNNTs. Raman excitation in the UV (229 nm) provides preresonant conditions, allowing the identification of the A1 tangential mode at 13...
متن کاملOn validity of current force fields for simulations on boron nitride nanotubes
Past molecular dynamics studies of boron-nitride nanotubes have used van der Waals parameters from generic force fields, combined with various values for the partial charges on the boron and nitrogen atoms. This paper explores the validity of these parameters by first using quantum chemical packages CPMD and Gaussian to compute partial charges for isolated and periodic boron nitride nanotubes, ...
متن کاملAb initio studies of vacancies in (8,0) and (8,8) Single-walled carbon and boron nitride nanotubes.
A systematic study of vacancies in single-walled carbon nanotubes and boron nitride nanotubes was carried out. First principles calculations within the framework of density functional theory using the CASTEP code are used to optimize fully the geometries of the systems. The generalized gradient approximation is used for the exchange-correlation functional. We find that the pristine single-walle...
متن کامل